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The film of liquid flowing down along a vertical or inclined surface into a surrounding 
different liquid is encountered in some forms of extraction equipment and in electric-arc 
fusion of metals. It is for this reason that this type of flow is of interest from the prac- 
tical point of view. On the other hand, the film of liquid forming a boundary with another 
liquid is interesting from the theoretical point of view as an example of a flow in which the 
flow in the external medium affects the surface waves in the thin liquid layer. 

The inflow of a film of liquid along an inclined or vertical wall into another liquid 
can be separated into three flow regions (Fig. I). In the region of the inlet section I, the 
flow is primarily determined by the conditions at the inlet and represents a near-wall stream. 
In the region of the initial section II, the conditions at the inlet no longer affect the 
flow, and the boundary layer developing in the external liquid has not yet reached the wall 
of the channel. In region III, the flow is a steady state flow which does not depend on x. 

The linear stability of the flow under examination in region III has been investigated 
in a number of papers [I-4], where it is shown that in region III, as in the case of a free 
film of liquid [5], the stability of the flow is related to the development of waves on the 
interface. The critical Reynolds number Re, equals zero for flow in the vertical channel and 
differs from zero in the inclined flow. The stability of the flow in the region of the ini- 
tial section II was not investigated in these papers. However, as shown in [6, 7], the 
boundary layer between two flows affects the stability of the flow. This paper is concerned 
with the investigation of the linear stability of the flow in the region of the initial sec- 
tion II. We examine the case when the liquids are immiscible, the flow is isothermal, and 
the external liquid is stationary at infinity. 

As is often done in analyzing the stability of boundary-layer flows [6-8], we shall 
assume that the unperturbed flow does not depend on the longitudinal coordinate x and the 
boundary layer in the external liquid has a finite thickness 6p. Experiments [9] show that 
in region If, when the quantity ~p exceeds the thickness of the film of liquid hp, the quan- 
tity hp is nearly independent of x. For this reason, in the case 6p > hp the unperturbed 
velocity profile can be approximated by a Nusselt profile [10] in the liquid film and by 
a Polhauzen profile [8], corresponding to a zero-gradient flow past a plate, in the bound- 
ary layer. In dimensionless form, where the average thickness of the liquid film h0 and the 
average flow velocity in it U0 are the length and velocity scales, the unperturbed velocity 
profile, which satisfies the conditions of continuity of velocity and tangential stresses 
of the interface, has the form 

g,(y)=3 l+g-~ y-t+g-~j-~-j, o~<y<~l ,  

9 ( Y i) (i § 6-- ~') 3, i~-~y~i+~, (I) u~ (y) = ~ 1 + @ 6 
U3(y)=O, l + 6 ~ y < o o ,  T=3~d6. 

In this case, for the average thickness of the liquid film we have 

ho= g (~_ o) It .+ 6-~--), (2) 

where 0 = Di/Pl, P = Pi/Pl are the relative density and dynamic viscosity, respectively (in 
denoting physical properties, the index I refers to the liquid forming the film and the in- 
dex 2 refers to the external liquid); Re = h0U0/vl is the Reynolds number based on the flow 
rate. 
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In investigating the stability of the flow under examination relative to infinitesimal 
perturbations, we shall seek all perturbed quantities in the form 

A ~ ,  V, t ) = Ao(y) exp [ta(x - -  c , t ) ] ,  (3)  

where ~, c, = c + i~ are the wave number and the complex phase velocity, respectively. 

Neglecting the nonlinear terms in the equations of motion of the liquid and using (3), 
we obtain the Orr--Sommerfeld equations for the amplitudes of the stream functions ~i(y) of the 
perturbed flow: 

. . 2 r _ [~a Re (U~-  c,) + 2~ ] r + [~a Re ( ~  (U~ - -  e,) + 

+ v ; ) + ~ q  r o, o~<v~<l; (4) 
F- 

q~v 7 ( U ~ _ _ c , )  + ~ +  . Re 2 

+ u~)+ ~ ] ~ , - - o ,  t < v ~ < t  +8; (5) 

t + 8 ~ y <  c~. 

The b o u n d a r y  c o n d i t i o n s  o f  a t t a c h m e n t  on t h e  wall, c o n t i n u i t y  o f  t h e  veloci ty a nd  
s t r e s s e s  on t h e  s u r f a c e  of  t h e  l i q u i d  f i l m  a n d  on t h e  e x t e r n a l  b o u n d a r y  of  t h e  b o u n d a r y  
layer, as  w e l l  a s  damp ing  of  t h e  p e r t u r b a t i o n s  a t  i n f i n i t y  c a n  be w r i t t e n ,  u s i n g  t h e  k i n e -  
m a t i c  condition at the interface, in the form 

! 

y = 0: ~ 1= 0 ,  ~t = 0; (7)  
t t t t 

y = i :  U I ~  + (c, - -  U1) ~1 = U 2 ~  + (c. - -U~)  %, ~1 = ~ ,  

;I �9 # ~ U u u v~,~ + (** go (~  + ~ )  ~ [ ~ + (~, - us) ( ~  + ~ ) ] ,  
(8) ' g '  t ,,' 2 ' 

- -  3 ~  ~ t )  ( c ,  ( C @  - -  U I )  [ ( c ,  U 1 )  q ) l  -{- l q ) , ]  ~ [ ( q ) l  - -  - -  g l )  - -  

t ; t 
2~' ,p~  v d - o,~,~l w ~ = ~, ( ~ , - u ,)  [(~, - u , )  ~ ,  + v ~ , ]  - 

'i~ 2 ' 2 t 

t i ## , f f  Ht t?l 

y=l +fi: ( P 2 = % ,  q0~=(ps, (I)2=q)3, ~P~ =(Pa; (9) 

y - +  oo: ~3, ~ ' 3 - * 0 ,  (10)  

whe re  v = v 2 / v l  i s  t h e  r e l a t i v e  k i n e m a t i c  v i s c o s i t y ;  We = o / h 0 U 0 o l  i s  W e b e r ' s  n u m b e r .  A c -  
c o r d i n g  t o  ( 2 ) ,  we h a v e  
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3 ~ i / 1  
W e =  V ~ e ~  + ~ ) ,  (11) 

where  F i  = o3 / (p~v~g(1  -- 0 ) ) .  

Thus the  l i n e a r  a n a l y s i s  of  t h e  s t a b i l i t y  of  t h e  f l o w  u n d e r  e x a m i n a t i o n  r e d u c e s  to  t he  
p ro b l e m of  f i n d i n g  the  e i g e n v a l u e s  of  t h e  Orr--Sommerfeld e q u a t i o n s  ( 4 ) - ( 6 )  w i t h  t h e  bounda ry  
c o n d i t i o n s  ( 7 ) - ( 1 0 ) .  

In  t h i s  work,  t h i s  p rob lem was s o l v e d  n u m e r i c a l l y  w i t h  t h e  h e l p  o f  t h e  d e t e r m i n a n t  me th -  
od [ 1 1 ] .  In  a p p l i c a t i o n  to  t h e  f l o w  u n d e r  e x a m i n a t i o n ,  t h i s  method c o n s i s t s  of  the  f o l l o w -  
i ng .  

Le t  ~,~ ( i  = 1 , . . . , 3 ,  j = 1, 2) be l i n e a r l y  i n d e p e n d e n t  s o l u t i o n s  of  gqs .  ( 4 ) - ( 6 ) ,  
where ~xl, ~i~ and ~ai, %~ satisfy conditions (7), (I0), respectively, while ~21, ~a2 are the 
continuation of the functions ~s~, %~ from the region y ~ I + 6 into the region I ~ y ~ I + 
with the help of conditions (9). Then the solution of the problem has the form 

~ = A2,igzi -~ A ~ 2 2 ,  t ~.  y ~< i + 6, (12) 

93 = Aai~3i + Aa2~32, t -~- 6 ~ y ~ OO. 

Substituting (12) into (8), we obtain a homogeneous system of linear algebraic equations 
for the coefficients All, AI2, A21, A22, for which the condition for the existence of non- 
trivial solution can be written in the form 

f ( a , c , ,  Re, We,  6, p, ~, D~)  = 0 ,  ( 1 3 )  

where 

Dil=lq)~, 1 qq,2 1, Di2= qo~ %2. , ~ !  qoi2 
I~ii qh2 ~ii q~l D ~ =  (Pii' . . . . . .  qoi2[ 

I I I ] I q)il q~i2 ~01, } q)~2 q) q)~2 
I l l  I t t  ~ H / $  �9 

The expression for the function F in (13) is not presented due to its cumbersomeness. 
be shown that the functions Dij satisfy the equations 

p r t 
Di l=Di6 ,  D ~ 2 = D ~ 4 ,  D' ~8 BiDi~, Di4 = Di3 + AiDi2 + BiDil , 

t t 

Dis = Di4 + AiDio, Di6 = Diz + Di5, 

(14) 

It can 

(15) 

�9 i Re where  A, = i o ~ R e ( U l - - c , )  + 2a2; B1 = i a R e [ ( U l - - c , ) a  2 + U~] + a4; A 2 = ~cr T-  ( U 2 - - c , )  + 2a2; B2 = ia Rex 
[ (c2  - c*)~  2 + c'~] + ~ .  

The b o u n d a r y  c o n d i t i o n s  f o r  the  f u n c t i o n s  D i j ,  by v i r t u e  of  t h e  h o m o g e n e i t y  of  t he  bound-  
a r y - v a l u e  p rob lems  ( 4 ) - ( 1 0 ) ,  have  t he  form 

y - =  0: D n ----- Dj2 ------ D14 ---- Dis---- DiS = 0, Dla = 1; ( 1 6 )  

y : I + 6: D2j = D s i ,  ] = 1 . . . . .  6. ( 1 7 )  

The f u n c t i o n s  Dsj in  (16) can be w r i t t e n  ou t  e x p l i c i t l y ,  s i n c e  f rom Eq. (6) we have  

%1 = e-~Y,%2 = e -~v, k = V a  2 - -  iaRec/v .  (18) 

F i n a l l y ,  u s i n g  ( 1 4 ) ,  ( 1 7 ) ,  and ( 1 8 ) ,  we o b t a i n  f o r  D2j 

y = I -I- 6:D21 = (a --  ~) exp [ - - (a  + k)(l + 6)1, 
(19) 

D ~  = ~k(c~ - -  k) e x p [ - - ( ~  + X)( l  + 6)] ,  D~.~ = ~ k 2 ( ~  - -  k) 

X exp[ --((z + k)(l + 6)], Dz4 -- r k2 --  o~2) exp [--(a. + k) 

x ( t  + 6)], D2~ ---- (a s - -  k s ) e x p [ - - ( a +  X)(I + 6)1, D28 

= (k 2 - -  (z ~) exp[ - - (a  + k)(l + 6)]. 
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To suppress the rapidly growing solutions of Eqs. (15) we introduce the new functions 

zij = Dij/Di3 and Eqs. (15) with the boundary conditions (16), (19), by virtue of the fact 

that the system (15) has the integral Di6Di4 = DiiDi3 + Di2Di5 , reduce to the system of equa- 

tions 

' .{t, o ~ y < ~ t ,  z i ~  = z i 4  - -  B i z i o z i z ,  

z~4 = A ~z~2 - -B i z~2z~5  + 1, 2, l ~ y ~ l  + 6, (20) 

z~5 = z ~  + A~zi6 - -  B~z~6z~5, z~6 = zi2 + z ~ 5 - -  B~z~6 

with the  boundary c o n d i t i o n s  

y = 0 : z 1 2  = z 1 4  = z 1 5  = z 1 6  = 0 ,  y = I + 6 :  z ~ 2 =  

= ! / ( ~ ) ,  z2~ - - ( ~  + ~)/(~k), z~  = ( ~  - k ~ ) / ( ~ ( ~  - k)), (21 )  
z~  = - ( ~  + ~ ) / ( ~  + ~). 

Equation (13) is written in the form 

y = i: F:(~, c, Re, We, 8, p, ~, zii) : 0. (22) 

Thus the problem of finding the eigenvalues of (4)-(]0) reduces to solving the alge- 
braic equation (22), in which the functions zij are solutions of the Cauchy problem for Eqs. 
(20) with the boundary conditions (21). 

In this work we calculated the wave numbers a H = f(Re) and phase velocities ~ = ~(Re), 
corresponding to neutral perturbations (~ = 0). Both in the case of a free liquid film [5] 
and with a combined flow of two liquids in a channel (in the region of the steady-state flow 
III) [I], the instability of the flow for Re is due to the presence of the interface. The 
phase velocity of waves on this interface equals approximately 1.5-3 and decreases with in- 
creasing Re and decreasing Fi. In the region of the initial section II, the experimentally 
observed undamped waves on the interface also have a velocity c ~ 2, which decreases with 
increasing Re [9]. It is natural to suppose that the stability of the flow under examina- 
tion is also related to surface waves in region Ii. For this reason, in this work, we in- 
vestigated the mode of oscillations corresponding to these waves. The region of instability 
(~ > 0) for this mode of oscillations in the ~ -- Re plane is bounded by a curve emanating from 
the origin of coordinates and by the axis e = O, on which, as follows from the solution of 
the system (4)-(I0), for a = 0 the velocity of waves equals c = 3(1 + T/(6 + T)). The second 
boundary of the region of instability was determined numerically. The calculations were 
performed for Re = 1-30, Fi = 5"106-5"10 ~~ p = 0.125-8, p = 0.4-0.9999, ~ ~ 4. The results 
of the calculation are presented in Figs. 2-4. Based on these results, we note the follow- 

ing. 

An increase in the value of p from 0.4 to 0.9999 with constant Fi leads to some decrease 
of the velocity of neutral waves and does not have a significant effect on the neutral curves 
~H= f(Re) [Fig. 2, ~ = i, ~ = 8, curve 1 corresponds to p = 0.4, Fi = 5.10 ~~ 2, p = 
0.9999, Fi = 5"10 I0, 3, p = 0.9999, Fi = 5.10 s, 4, p = 0.9999, Fi = 5"105]. An increase in 
Fi leads to an increase in the velocity of neutral waves and a narrowing of the region of 
instability [since Fi % o3/(p~v~(1 -- p)], this parameter can change by several orders of mag- 
nitude when o, p~, vl change by several factors and pchangesbyan amount of the order of one. 

An increase in the thickness of the boundary layer (Fig. 3, Fi = 5"10 ~~ p = 0.9999, 
p = I, ~ = 4; 8; ~ for curves I-3) leads to a narrowing of the region of instability for 
small Re. For Re ~ 30, as 6 increases, the region of instability is smallest for some fi- 
nite, depending on Fi, p, p, Re, value of ~. The velocity of neutral waves decreases for 

small Re and increases for large Re with increasing ~. 

An increase in ~ for finite values of ~ (Fig. 4a, ~ = 8, Fi = 5"10 ~~ p = 0~ p = 
n.125; I; 8 for curves I-3) increases the width of the region of instability for small Re. 

For large values of Re the region of instability is smallest for some finite, depending on 
Fi, ~, p, Re, value of p. The velocity of neutral waves increases with increasing p for 
small Re and is smallest for some finite, depending on Fi, 6, p, Re, value of p for large 
Re. The relative dynamic viscosity ~ affects the stability of the flow, on the one hand, as 
a parameter in the equations of the perturbed flow and, on the other, through the unperturbed 
velocity profile and, as shown in [3], through the magnitude of the discontinuity of the de- 
rivative dU/dy at y = 1. When ~ § ~, the flow in the external medium becomes uniform, and 
the unperturbed velocity profile does not depend on p, while dU/dy = 0 in the limit 6 + ~. 
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Therefore, in this case, ~ affects the stability of the flow only as the parameter in the 
equations for the unperturbed flow. As ~ increases (Fig. 4b, 6 = ~), the region of instabil- 
ity widens for small Re and narrows for large Re, and the velocity of the waves decreases. 

Thus, when a film of liquid flows along a vertical wall into another liquid which is 
stationary at infinity, undamped waves exist at the interface for any Re. For Re ~ 30 the 
characteristics of these waves for fixed Re are determined primarily by the parameter Fi and, 
to a lesser extent, by ~ and 6. 

The authors thank V. E. Nakoryakov for formulating the problem and for his interest in 
the work. 
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